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Abstract

New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations
are developed by casting the differential equations into integral form. Nonlinear recursive relations are
obtained that allow the solution to a system of equations at time t + At to be obtained in terms of
the solution at time t in explicit and implicit forms. Examples of the accuracy obtained with the new
technique are given by considering systems of nonlinear, first order, differential equations which arise in
the study of unified models of viscoplastic behavior, the spread of the AIDS virus, and predator-prey
populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of
smaller dimension than that which is required by current implicit methods, such as the Euler backward
difference algorithm, yet it gives superior accuracy. The asymptotic explicit and implicit algorithms are
suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the
implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions
in which both growing and decaying exponential solutions exist.

1 Introduction

In many scientific fields, systems of first order ordinary differential equations are used to model physical

processes of interest. These equations are often coupled, mathematically stiff and/or nonlinear, thereby

requiring special numerical algorithms for their solution [1]. Solutions for such systems of equations typically

require an excessive number of very small time steps in order to retain both stability and accuracy when
integrated with an explicit forward difference method--like the forward Euler method, which is conditionally

stableIeven when a self-adaptive time stepping scheme is used. The implicit backward Euler method

provides a stable integration algorithm that is asymptotically accurate for both very small and very large

time steps; however, it loses accuracy over some intermediate range of time step size [2, 3], because the

first order Taylor expansion of the Euler method cannot simulate the exponential solution of the first order

differential equation.

Alternative solution techniques are developed herein, where the differential equations are cast into inte-
gral form. The integrands of these integrals are then expanded into Taylor or Euler-Maclaurin series, and

integrated term by term. Expanding about the lower limit of the integral, t, leads to an explicit formulation

whose stability for exponentially decaying solutions is unconditional in the linear approximation and in the

exact solution, but it is only conditionally stable for quadratic and higher approximations. In order to retain

accuracy, even in the unconditionally stable cases, the time increment must be monitored in the explicit

formulation. The explicit algorithm provides an asymptotically accurate representation when the solution

is of the exponentially growing type, but is not asymptotically accurate for decaying exponential solutions.

On the other hand, expanding about the upper limit, t + At, leads to an implicit iterative formulation

whose stability for exponentially decaying solutions is unconditional. Tile implicit algorithm provides an

asymptotically accurate representation when tile solution is of the exponentially decaying type, but is not



asymptoticallyaccurateforgrowingexponentialsolutions.Theexplicitandimplicitsolutionsaretherefore
complementaryin providingcorrectasymptoticrepresentationsfor growinganddecayingexponentialso-
lutions.Expandingaboutbothlimits leadsto an implicitEuler-Maclaurinformulationwhosestabilityis
conditional,butwhoseaccuracyisoftenbetterthaneitheroftheprecedingapproaches,especiallywhenthe
solutionsareoscillatoryin natureandcontainbothexponentiailygrowinganddecayingcomponents.

Theexplicitalgorithmscanberesolvedusingaself-adaptivetimesteppingtechnique,whilsttheimplicit
algorithmscanberesolvedusingNewton-Raphsoniteration,whoseconvergenceisquadratic.

A methodsimilarto thatwhichisproposedherewasdevelopedbyDennis[4]to integratehomogeneous,
first order,ordinarydifferentialequationswith exponentialtypesolutions.Hewasthusabsolvedfrom
evaluatingtheintegralcontributionsin thenonhomogeneousterms;a taskwhichformsthebulk of the
presentpaper.

Thepaperbeginswith somediscussiononnotation. This is followedby an overviewof the various
algorithmsderivedhereinfor theintegrationof firstorderordinarydifferentialequations;thisis asynopsis
of thepaper.Thereaderwhoisonlyinterestedin theapplicationofthesealgorithmsmayskipaheadto the
lastsectionwherefourexamplesareaddressed.Sections4-7givethederivationsofthealgorithmspresented
in theoverview,section3. Section8 providessolutionmethodologiesfor thesealgorithms.Thelastsection
appliestheresultsof thispaperto fourexamples:afirstorderordinarydifferentialequationwhosesolution
is known,therebyallowingtheaccuracyof thevariousalgorithmsto beassessed;a populationmodelfor
thespreadof theAIDSvirus;theclassicalpredator/preypopulationmodelof LotkaandVolterra;anda
viscoplasticmodelusedbytheauthorsfor thedescriptionof metallicdeformationat elevatedtemperatures.

2 Notation

In this paper we address a general system of N, first order, ordinary differential equations of the form

J(i+iU1Xi=iVl (fori= l,2,...,N;nosumoni), (1)

where tile Xi[t] are the N independent variables to be solved for. These independent variables may be scalar,

vector, or tensor valued; for example, in our native rescarch field of viscoplasticity, N = 13 typically, where

two of the variables are symmetric second rank tensors and the third is a scalar [3, 5, 6, 7]. The dot '"
is used to denote differentiation with respect to time, t. We choose time to be the dependent variable for

illustrative purposes, as it so often is in physical applications; however, this is not a necessary restriction on

the theory. The square brackets [.] are used to denote 'function of', and are therefore kept logically separate
from parentheses (-) and curly brackets {.} which are used for mathematical groupings.

The parameters iU1 [X_[t],t] and iV1 [Xk[t], t] are, in general, functions of the variables Xk[t] and t. If

neither parameter is a function of the independent variables, X_, then the system of equations is said to be

linear; otherwise, it is nonlinear. To simplify the notation, we use square brackets containing time to stress

the dependence of any variable on both Xk[t] and t. For example, we write the integral AI[At] to denote

that the integral Ai depends on either Xk[t + At] or X_[t], and At. Similarly, iUl[t + At] and iVl[t + At]

denote the values of the parameters iU_ [X_[/+ At], t + At] and iV1 [Xk[t + At],t + At] at time t+At. These
parameters have the following notations associated with them:

jfr t
iu[t] = ,u, [d

=0

etc.,

jfr _
iv[t] = dr,

=0

ivy[t]= iv [t],
iW3[t] : i_'l It],

where iU[0] = iV[0] = 0 and t > 0. Only for the parameters U and V are subscripts used to denote thc

order of differentiation, unless explicitly stated otherwise.

The asymptotic, implicit, Taylor algorithms are best suited for the case where iU_[t] > 0 and t E [0,¢_),
whilst the asymptotic, implicit, Euler-Maclaurin algorithms are suitable for those cases in which the sign of

iUl[t] is arbitrary or changes during the integration.



3 Overview

This paper transforms a first order ordinary differential equation into an integral form, and then exploits

integration algorithms of varying degrees of accuracy for effecting the quadrature. Implicit solutions are

based upon Taylor expansions of the integrand about some future time, t + At. Explicit solutions consider

Taylor expansions of the integrand about the current time, t. And the implicit Euler-Maclaurin solutions
are derived from Euler-Maclaurin expansions of the integral about both the current time, t, and the future

time, t + At. The degree of accuracy of a particular solution depends upon how many terms are kept in the

series expansions.
In many of the derivations that follow, and without loss in generality, it is useful to consider a single,

first order, ordinary differential equation, i.e.

2 + u,x = v,, (2)

instead of the system of equations given in (1), thereby removing some excessive notation. Only in the

last two sections of the paper is it necessary to distinguish between the various equations that make up the

system, and hence the more detailed notation of (1) must he used.

Integrating this first order differential equation, one acquires the well known solution

x[t + at] = x[t] e-(ul'+a'l-u[']) + f,+a, OV[_] dee-( u[t + a'l-u[¢]) (3)
.,¢=, O_ "'

which is written here in recursive form, and which corresponds to equation (14) in the text. A recursive

solution is particularly advantageous for numerical applications. The nonrecursive form of equation (3)

was developed by Bernoulli [8, 9] in the seventeenth century*, and will be referred to here as the Bernoulli
solution.

3.1 Bernoulli Solution

Whenever UI and II1 are both constant valued, i.e. independent of both X and t, the differential equation (2)

is linear and the recursive integral equation (3) can be integrated exactly resulting in

Vx (1 - e -tq'a') (4)x[t + at] : x[t] _-u,_, + _

This is an exact integration of a linear, first order, ordinary differential equation with constant coefficients.

The purpose of this paper is to obtain Bernoulli type solutions (both approximate and exact) for nonlinear,
first order, ordinary differential equations by expressing them as linear equations with variable coefficients.

3.2 Linear Solutions

After applying a sequence of three Taylor series expansions to the recursive solution (3), we obtain the

following implicit,

x[t + at] __x[t] e-U't'+a'la' +

and explicit,

Vl[t + All (1- e-U_[t+at]'at)
U, [t + At]

(expand about t + At), (5)

vl[t]
(1- e -v'Itla')x (expand about t),X[t + At] = X[t] e-u'Ha' +

(6)

'linear' approximations for the integration of a general, first order, ordinary differential equation. Similarly,

after applying a sequence of three Euler-Maclaurin series expansions to the recursive solution (3), we obtain

the following 'linear' trapezoidal approximation,

' (V,[t] e-½ (_'t'l+U't'+_'l)_' + V,[t + atl).at, (7)X[t + At] __ X[t] e -}(Udt]+U'[t+at])'at + _

"The solution obtained by John Bernoulli in 1697 was expressed as a quadrature since the integral of dz/z in the form of a
logarithm was not generally known until later that same year.



for theintegrationof a general,first order,ordinarydifferentialequation,wherethisexpansionisequally
weightedaboutthetwolimitsofintegration,i.e. t and t + At.

These three solutions correspond respectively to equations (19), (21), and (25) in the text. We refer to

these equations as linear, even though they are nonlinear in the solution variable X, because the three series
approximations used in their derivation were each truncated after their linear term. The fact that UI and

V1 are not constant valued, in general, is the distinguishing feature between the linear approximations (5)
and (6) and the Bernoulli solution (4) to the first order differential equation (2).

3.3 Quadratic Solutions

A more accurate representation of the integrated solution to (2) is arrived at by retaining the higher order

derivatives in the three series approximations. Upon truncating the Taylor expansions after their quadratic
terms, we obtain the implicit,

x[t + :`t] __

+

and explicit,

X[t] e-( v't'+:`'lAt- ] v_t'+:`'la_) +

( v_[t+Atl '_" (2./!v_[t+A_l _-_,l,+:`,}:`, (U'[t+At]':`0 m
_\2u,[t+At]_] .! u,[t+:`t] i- _ m! -
n=O rn=O

(2n + 1)! V_[t + At] e_U,[t+:,,].:, , (Ux[t + At].At) k
nr Ul[t+At]2 1- _ k! ' (8)

k=0

X[t] e-(U_[t]:`t+ ½U_ttla`_) +

oo n [ 2n

_-V'*l :`'_ ,,=o_k2_[t]_ [ n! Ux[t] m=0 m!

(2n + 1)! V2[t] _--_ (_l)k t_,t j.At)k- k! - e-Vdfl':`'
n! Ul[t] _ k=o

(9)

'quadratic' approximations for the integration of a general, first order, ordinary differential equation. Like-
wise, by truncating the three Euler-Maclaurin expansions after their quadratic terms, one obtains the fol-

lowing 'quadratic' Euler-Maclaurin approximation,

X[t + At] _ X[t]e -:`_t:`'l + ½ (V,[t]e -:`_t:`'l +Vl[t + :`t]).:`t +

(v tt], - v tt+Atl).:`t++

{v,tt] (½(t:,it3+u,tt+ :,,3)- +u tt+ -+

- U_[t + At] Vl[t+ :`t]).:`t 2, (10)

for the integration of a general, first order, ordinary differential equation. Here

:`_[:`t] = ½(Ui[t] + U,[t + :`t]).:`t + _(U_[t] - U_[t + :`t]).:`t _

is the argument of the exponential used above.

These quadratic approximations correspond to equations (37), (41), and (44) in the text. The quadratic

implicit and explicit approximations reduce to their linear counterparts stated above whenever U2 and
V: are both zero valued. Itowever, the quadratic Euler-Maclaurin approximation does not reduce to its

linear counterpart under similar conditions, because of the U1 and 111 terms in the curly brackets {.} of
equation (10). Only when U2 and V2 are both zero valued and At << 1 does the quadratic Euler-Maclaurin

solution reduce to its linear counterpart. This is because the correct asymptotic solution of the differential

equation (2), i.e. VI/UI, resides solely in the linear term of the Taylor approximations, but it does not



reside in the linear term of the Euler-Maclaurin approximation. Higher order terms are needed in the

Euler-Maclaurin solutions to obtain a good asymptotic solution to the differential equation.

The infinite sums on n in (8) and (9) must be truncated in numerical applications. Their rates of
convergence are governed by the ratio U2/U_, and by the expressions in the last parenthetical bracket (.)

appearing after the sum on n. Both of these expressions go to zero as n goes to infinity. Therein the sums on
m represent the first n terms in an exponential series. The difference between the sum and the exponential

goes to zero with increasing n even more rapidly than the expressions themselves.

3.4 Exact Solutions

Finally, exact solutions for the integration of (2) are obtained by retaining all the derivatives in the three
Taylor series expansions that are used in its derivation. For the implicit solution we obtain

x[t + At] =

+

X[t] e - AeV''] +

k_ n (n+2m)' ( Vn-k+a[t+A'] )_brn'_ (-1)"-k m! (n - k )! \ U"_ _ _+'y'-_-_+I
rn=0 n=0 k=0

"+_" (ul[t + At].At)P_x 1- e-U'[t+at]at _
p=0 _ ]

×

(11)

whilst for the explicit solution we obtain

x[t + At] =

+

X[t] e -aela'l +

_ _ (_1).+2., (n + 2m)' ( W.-k+l[t] '_e-(_'t_']-U't']_') _ bm,k m!(n :- _:_ \U,[t]-+2m+,]
rn=0 n=0 k=0

(n+2rn • t e_Ul[t].A|_
(-1)' (UI[_iA _'X

\ p=O F.

(12)

which correspond to equations (57) and (63), respectively, in the text. Here

OO

AO[At] = Z(--1) n+l Un[t + At]n! Atn

and

:,o[At] = _ u.[t]
n=l

are the arguments of the exponential functions found in (11) and (12), respectively. Truncating the series

in these solutions after their linear and quadratic terms leads to the linear and quadratic approximations

listed above. Other higher order approximations, e.g. cubic and quartic, can likewise be derived from these
exact solutions. As an aid to the reader interested in their development, Table 1 presents some of the lower

order elements that define the matrices bm,n given in equations (52-54) and (60-62) for the implicit (11)

and explicit (12) exact solutions, respectively. The subscript notation of the matrix bm,n denotes summing
indices; they are not differentiation indices.

For the numerical analyst interested in evaluating a large number of derivatives, the explicit solution

would be the appropriate 'near' exact solution to use, because it does not require iteration. The exact

implicit solution is presented for those who are interested in constructing higher order implicit algorithms

than the quadratic one which is presented herein.



Table1:Elementsof thematrixbm,n.

Un - U,[t + At] for the implicit case in Eq. (11).

Un - U,_[t] for the explicit case in Eq. (12). All the elements b,,,,,_=odd are prefixed with a positive sign.

bo,o = 1, bo,1 = 0, bo,2 = 0, bo,3 = 0, bo,4 = O, bo,s = 0

u2 u3 u4 u5 u6 u7
b,,o = -_-, b1,1 = -y, bl,2 _ _-, bl 3 = bl,4 =' 120' = 7--'-_' bl,5 5040

v2v_ 3u2u4 + 2ug 3u_u5 + 5u3u,
b2,o = -_, b2,1 = 6 ' b_,2 - 72 ' b2'3 = 360

b2,4 = 4U2U6 + 8U3U_ + 5U,_ 6U2U _ + 14U3U 6 + 21U4U 5
2880 , b2,_ = 30240

b3,o = U3 b3,1 - U_U3 b3,2 = 3U_U4 + 4U2U_ 27U_U5 + 90U_U3U4 + 20U_
-8-' 8 ' 96 , b3,3 = 4320 '

ba 4 = 6U_U6 + 24U2U3U 5 + 15U2U, _ + 20UgU 4
' 5760 '

b3,5 = 6U_Ur + 28U2U3U6 + 42U2U4U5 + 28U_U5 + 35U3U_
40320

u_ u_u_ b,,_ = u_u, + 2u_vg b,,3 = 9u_v_ + 45u_v_v, + 20v_u_
b4,o = -_-, b4,1 - 12 ' 48 ' 2160

b4,4 = 36U_U6 + 216U_U3U5 + 135UffU42 + 360U2U_U4 + 40U4
51840

b4,5 = 18U_U7 + 126U_U3U6 + 189U_U4U5 + 252U2U_U5 + 315U2UaU24 + 140U_U4
181440

_ U_ 5U_U3 15U_U4 + 40U3U23 bs,a = 9U_U5 + 60U3UaU4 + 40U_U3
bs,o - -_-, b5,1 - 96 ' bs,_ = 1152 ' - 3456 '

b5,4 = 9U_U6 + 72U_UzU5 + 45U_U_ + 180UiU_ U4 + 40U_U_
20736

b5,5 = 27U_U7 + 252U_U3U 6 + 378U_U4U 5 + 756U_U_U 5 + 945U_U3U _ + 840U2U_U 4 + 56U_
435456



4 Recursive Integral Equation

One can integrate the differential equation (2) over the time interval [0, t + At] by introducing an integrating
factor, and thereby obtain

x[t + at] X0 e -U[_+at] + exp d d_
¢_=0 - jr=f Or --_

ft+at e -(vIt+atl-v[_]) OV[_] dG
= X0 e-v[_+atl + J¢=0 3--_

(13)

4.1 Asymptotic Integration

For the asymptotic Taylor algorithms developed in this paper, we assume that Ul[t] > 0 for t E [0, oo), so

that U[t] = fo UI[r] dr is a monotonically increasing function of time. The nonhomogeneous integral (15) is

then a Laplace integral [11, 12, 13, 14] where the integrand has its largest value at the upper limit, t + At,

and possesses an evanescent memory of the forcing function OV[_]/c9f. This fading memory means that the
solution will depend mainly on the recent values of the forcing function, and by concentrating the accuracy

on the recent past we obtain accurate asymptotic representations of the solution.

In the implicit solution, the integrand is expanded in a Taylor series about the upper limit, t + At, where

the integrand has its largest value and contributes most to the integral. By retaining just a few terms in the

where X0 -- X[0]. The integral in this equation is the nonhomogeneous contribution to the solution of the
differential equation. This integral equation can be cast into a recursive relation by dividing the interval of

integration into two parts, viz.

_' OV[_] ft+at OV[,]X[t + At] = Xo e -U[t+atl + e -(U[t+Atl-U[¢l) -- d_ + e-(Ult+Atl-U[f]) _ d_.
=0 J¢=t

Substituting the identity 1 = exp[-U[t]] exp[U[t]] into the first integral of this equation results in

f' OV[_]X[t + At] = Xo e-vlt+atl + e -(vlt+atl-v[t]) e -(v[tl-v[e]) -- d_ +
J

/,+at 0v[ ] ef+ e-(V[t+at]-u[_])
q=_ 0f "'

which simplifies to the desired reeursive integral equation

it+AtX[t + At] = X[t] e -(U[t+at]-U[tl) + e_(UIt+Atl_U[_] ) 3v[J__] dr, (14)

whose derivation made use of (13) when integrated over the time interval [0, t].

The recursive integral equation (14), which is an exact solution to the first order ordinary differential

equation (2), is practical only when a solution exists for evaluating the integral

f,+a, OV[(]AI[At] =_ e -(vIt+ad-v[_]) -- dr, (15)
J_=t 0_

which appears in (14). This integral will be referred to as the nonhomogeneous integral, because it represents

the nonhomogeneous contribution in the solution to the first order ordinary differential equation (2). The

need to obtain solutions to integral (15) in order to develop integration methods for stiff, first order, differ-

ential equations was pointed out by Hamming [10], but as for its solution, he left "the details to the reader".

In this paper several different solution strategies are presented for this integral. They differ in their approach
(i.e. implicit and explicit Taylor, or implicit Euler-Maclaurin) and in their accuracy of approximation (i.e.

the number of terms kept in their series expansions).



Taylorseriesexpansiontheintegrandis accuratelyapproximatedwhereit is largest,andtheneglectof the
higherordertermsisonlyfelt nearthelowerlimit, t, where the integrand contributes only a small amount

to the integral because of its exponential decay from the upper limit. The neglect of the higher order terms

in the Taylor series thus results in an algorithm that is asymptotically correct at the upper limit. Normally,
when treating asymptotic expansions, the exponential decay of the integrand allows the lower limit to be

replaced with zero or minus infinity to ease the integration. This is not done in the present case, however,

so that by retaining the lower limit as t, we obtain a uniformly valid asymptotic algorithm in the implicit

approximation whenever U1 It] > 0. When the infinite Taylor series is kept the exact integral is obtained.

In the explicit solution, the integrand is expanded in a Taylor series about the lower limit. The neglect of

the higher order terms in the Taylor series results in an integrand that becomes progressively more inaccurate

as we approach the upper limit of the integral, where the contribution from the integrand is most important.

The explicit approximation is not, therefore, a valid asymptotic representation of the integral when the
Taylor series is truncated at a finite number of terms. However, the exact solution is recovered when the

infinite Taylor series is kept in the integrand. This exact solution necessarily differs from the exact implicit
solution.

Whenever U1 [t] < 0 and therefore U[t] becomes a decreasing function of time, the reverse situation occurs.

In this case the asymptotic solution is now obtained by expanding the integrand about the lower limit, t,

where the integrand contributes most to the integral. Now the implicit method, obtained by expanding
about the upper limit, does not give a valid asymptotic representation of the integral.

In the case where UI[{] changes sign in the time interval from t to t + At, it may become necessary to

determine the time _ E It, t + At] where this occurs. We then have

f/ ov[_] ['+_' ov[_]AI[At] = e -(u[*+_]-ul_]) _ d_ + e -(v[t+A*I-u[_I) -- d_.
=, O_ -,4=¢ O_

If U1 [_] __> 0 for _ E [t, (] and U1 [_] __ 0 for ( e [(, t + At], an asymptotic representation of (15) can be found

by expanding the integrands in both integrals about _ = i- On the other hand, if U1 [_] < 0 for _ e [t, _] and
Viii] > 0 for _ e [(,t + At], then an asymptotic representation of the nonhomogeneous integral (15) must

be sought by expanding the integrand in the first integral about the lower limit _ = t, and by expanding the
integrand in the second integral about the upper limit _ = t + At.

Many differential equations have regions where the derivative OV[_]/O_ in the nonhomogeneous integral

(15) grows more rapidly with time than the exponential decays, whilst others have regions where U1 [_] < 0

and the integrand grows exponentially. In such cases, the asymptotic Taylor algorithms must use sepa-

rate points about which the integrand is expanded. An alternative strategy is to evaluate the integral by

trapezoidal or more accurate integration schemes. We may, for example, approximate the nonhomogeneous
integral (15) with the asymptotic Euler-Maclaurin expansion.

The Euler-Maclaurin expansion provides the value of the integral from a knowledge of its integrand, and
tile integrand's higher order derivatives, evaluated only at the two limits, t and t + At. This is an important

consideration, because this type of integration method is implicit. If other quadrature methods--such as

Gaussian integration--were used, the integrand would have to be evaluated at a number of intermediate

points between t and t + At, and therefore implicit iterative procedures would be required at each quadrature
point.

4.1.1 Implicit Variable Change

Implicit asymptotic solution strategies for the nonhomogeneous integral (15) with Ul[t] > 0 are obtained by
expanding its integrand into a Taylor series about the upper limit, t + At, where values for the variables

are unknown, and therefore the solution technique must be iterative. To simplify the derivation of these

strategies, it is useful to transform this integral into the equivalent relationship,

jfz At
AI[At] = - e_(Ult+Zxt]_u[t+at__] ) OV[t + At - z] dz,

----0 C_Z
(16)

by introducing the change in variable z = t + At -- _.



4.1.2 Explicit Variable Change

Explicit solution strategies for the nonhomogeneous integral (15), on the Other hand, are obtained by ex-

panding its integrand into a Taylor series about the lower limit, t, where values for the variables are known.

To simplify the derivation of these strategies, it is useful to first multiply the integrand by the identity

1 = exp [-V[/]]exp lUll]l, and to then transform the resulting integral into the equivalent relationship,

,,t ay[t + z]AI[At] = e-(U[t+_t]-U[t]) e (U[t+z]-U[_]) dz, (17)
=0 _Z

by introducing the change in variable z = _ - t.

5 Linear Solutions

The simplest approximation that one can make to gain a solution for the first order ordinary differential

equation (2) is a linear one. Implicit, explicit, and trapezoidal formulations are considered below. These
solutions are referred to as being linear because the series approximations used in their derivations are

truncated after their linear term. However the resulting formulae are not linear equations, because both U[t]

and Y[t] may be functions of X[t].

5.1 Implicit Approximation

By expanding the arguments of the exponential and forcing functions of integral (16) into Taylor series--viz.

U[t+At-z] = U[t +At] -- Ul[t+At] .z + h.o.t., where h.o.t, means higher order terms, and a like expansion

for V[t + At -- z]--this integral can be rewritten as

which when integrated gives

j(z At
AI[At] _ e -Ul['+Ad* V1 [t + At] dz,

=0

(18)

AI[At] "_ Vl[t + At] ,[I- e -v'lt+a`l_') \
- ux [_+ At]

for an approximation to the nonhomogeneous integral (15). Substituting this result into the recursive integral

equation (14) leads to the desired approximation [3, 5],

Vl[l + At] (1- e-U)['+AI]'A`) (19)X[t + At] "_ X[t] e -Ul[t+ht]&t + Ul[t + At]

which is the linear, implicit, recursive solution to the first order differential equation (2). The derivation of

this result also made use of the Taylor approximation U[t+At-At] = U[t] = U[t+At]-U_[t+AZ].At+h.o.t.

in the exponential term found in the homogeneous solution, i.e. the non-integral term in the recursive

solution (14). This is an implicit representation because the parameters U1 and V1 are both evaluated at a
future time, t + At, and are therefore unknown ¢i priori.

5.2 Explicit Approximation

Similarly, by expanding the arguments of the exponential and forcing functions of integral (17) into Taylor

series--viz. U[t + z] = U[t] + U_[t]. z + h.o.t., and a like expansion for V[t + z]--this integral can be rewritten
as

_XI[At] __,-v,l,l.,,, ev't'l_ v_[t]dz, (20)
=0

where the series expansion U[t + At] = U[t] + U1 [t].mt q.- h.o.t, was applied to the exponential term in front

of the integral in (17). Integrating this relationship gives

aztad--,v,[t](1-e-U*l,'')-u-7 



for an approximation to the nonhomogeneous integral (15). When this result is combined with the recursive
integral equation (14), one obtains the desired approximation

VIii] (l_e_V,[t].n,), (21)x[t + A_]= x[t] e-U'l'] ''' +

which is the linear, explicit, recursive solution to the first order differential equation (2). This is an explicit
representation because the parameters U1 and 1/'1 are both evaluated at the current time, t, and are therefore
known.

5.3 Trapezoidal Approximation

By using an Euler-Maclaurin quadrature to expand the integrand about its limits of integration [15], we
obtain

AI[At] __ ½(fill + f[t + At]).At (22)

as a linear trapezoidal approximation to the nonhomogeneous integral (15). Here the function f[_] is defined

as the integrand of (15), which has the form

f[_] = e-(Vl,+",l-Ul_])OV[_]

[i ]= 1/1[_] exp U1 [r] dr . (23)

The integral in (23) can also be represented by an Euler-Maclaurin expansion, thereby allowing the function
f[_] to be approximated by the expression

y[_]__vl[_] exp[-1 (v,[_] + Vl[t + All) (t + At - _)],

where once again the expansion is truncated after the linear term. Combining this result with equation (22)
gives

( -_u,t,l+Ull,+_,,])._, + Vx[t+ At]).At (24)AI[At] "., _1 Vl[t] e

for an approximation to the nonhomogeneous integral (15). Finally, substituting this result into the recursive
integral equation (14) leads to the desired approximation,

x[t + At] __x[t] _-_(u't'l+U't'+A'D_" + ½(v, [t],- ½(v,t,l+U,t,+,,,l)._,+ v_[t+ All).At, (25)

which is the linear, trapezoidal, recursive solution to the first order differential equation (2). The derivation

of this result took the argument of the exponential in the homogeneous contribution of (14) to be expressed

as an integral--similar to the way in which the argument of the exponential in the function f[¢] was handled
above---which was then expanded in an Euler-Maclaurin series and truncated after the linear term. This is

an implicit solution because both Ux[t + At] and V_[t + At] appear in the solution, and therefore it must be

solved iteratively using a technique like Newton-Raphson iteration, as their values are initially unknown.

5.4 Discussion of Linear Solutions

Comparing the linear, implicit (19) and explicit (21), approximate, recursive solutions for the first order
ordinary differential equation (2) with the Bernoulli recursive solution (4), one notices that all three solutions

have the same functional form, except that U1 and 1/1 are not constant valued in the implicit and explicit
solutions of (19) and (21). The implicit and explicit solutions differ between themselves only in when the

parameters U_ and 1/1 are evaluated, viz. at some future time, t + At, versus the current time, t. However

this does not imply that they have the same numerical characteristics, for they do not.

For large time steps, At >> 1, with U1 > 0, the exponential term becomes small compared with 1, and

the asymptotic expansions
I/1 [t + At]

lim X[t + At] × (26)
,_t--I_rge U1 [t + At]'
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and

v [t]
lira X[t + At] × -- (27)

lim X[t + At] × ½Vl[t + At].At (28)
A_--_large

are obtained for the linear implicit (19), explicit (21), and trapezoidal (25) solutions, respectively. The

asymptotic expansion in (26) is the correct asymptotic solution to the first order differential equation (2);

the other two asymptotic expansions, (27) and (28), are not correct asymptotic solutions.

At the other extreme, for small time steps, At << 1, the exponential term has a value of about unity, and

(19), (21), and (25) reduce to

lim X[t + At] : X[t] + Vl[t + At].At + h.o.l., (29)
At--*small

lim X[t + At] = X[t] + Vl[t].At+ h.o.t., (30)
_t_small

and

aim X[t + At] = X[t] + ½ (Vl[t] + Vl[t + At])-At + h.o.t., (31)
At-*small

which correspond to the classical Euler backward, Euler forward, and trapezoidal difference methods, re-

spectively, whenever U1X is small compared with V1.

Although the difference between the implicit and explicit approximations in (29) and (30) is negligible

for small At, the difference between (26) and (27) can be enormous for large At. If we start at t = 0 and

apply a large time increment At, the solution V1 [At]/U, [At] for the implicit approximation is asymptotically

correct, whilst that of the explicit solution, V1 [0]/U1 [0], corresponds to a ratio of the slopes of V and U at the

initial time, t -- 0. In the case of viscoplasticity, these situations correspond to a correct viscoplastic solution

in the implicit approximation, and an incorrect elastic solution in the explicit approximation, respectively.

In subsequent time steps the explicit approximation will oscillate around the true solution, but it will not
become unstable. These oscillations can be mitigated only by choosing smaller time steps. The implicit

approximation, on the other hand, is accurate for all sized time steps for exponentially decaying solutions.

In the case where V1 is slowly varying and higher order derivatives can be neglected, the asymptotic limit

is V_ [t + At]/U_[t + At], and not Vt[t + At].At/2. However, the current trapezoidal approximation provides
accurate values of AI[At] for intermediate time steps, and this is an important consideration in those cases

where the derivative V1 in the integral swamps the exponential decay, or when Ul[t] becomes negative and

asymptotic methods require expansions about appropriate limits.

6 Quadratic Solutions

Quadratic solutions for the first order ordinary differential equation (2) are derived in this section by using

y = u_ [t + At]. z

as a change in variable for the implicit solution, and by using

y = u_ [t].z

(32)

(33)

as a change in variable for the explicit solution. These quadratic approximations are derived in a similar

manner to the linear approximations determined above, but now the three Taylor series expansions are

truncated after their quadratic terms. Likewise, a quadratic Euler-Maclaurin approximation is derived by

expanding the integral solution (14) with three Euler-Maclaurin series, which are then truncated after their

quadratic terms.

11



6.1 Implicit Approximation

If the Taylorexpansionsusedin the derivationof the linearimplicitsolutionaretruncatedaftertheir
quadratictermsratherthanthelinearones,then(18)becomes

ffAS[at] __ e-(u'E'+''l_-_v_t'+A'l=_) (Vl[t + At] - V2[t+ at].z) dz, (34)
=O

which is a more accurate approximation to integral (16).

By introducing the change in variable (32) into (34), one obtains

i U_[t+Atl'xt dz
A I[At] "_ e -_ e_U2[t+at]"2(Vl[t + At] - V2[t + At].z) _y dy,

Jy=O

which, upon expanding the second exponential in the integrand into a power series, interchanging the order
of summation and integration, and differentiating the change in variable (32), enables integral (34) to be
written as

aS[At] = _ _., \2U,[t + at],)
ri=O

[ v,[t+ at]/_,,t,+,,,r,,, v2[t+ at] [_',t'+"'r"' )x e-y y2n dy -- e-y y_n+l dy . (35)
t E]7,It+ At]_=_o U,It+ At]2.,_=o

Noting that [16]

e -uy'_dy=n! 1-e -_ _ , (36)
----0 m----0

which is the difference between the gamma and incomplete gamma functions, enables the two integrals in

(35) to be integrated, giving

{ ( - )( u_[t+at] _" (2,,)!v_[t+at] _-_,t,+,,,r,,, (ux[t+At].at)"
As[at] ____ \ 2Ul[t+ At]_) .! u,[t+ at] 1- _ _! -

rt=O m=O

( .+1 )1(2, + 1)! v2[t+ At] _-v,t,+,,,i.,,, (u_[t + At].at) k
- n! u_[t+'At]2 1 - _ k! "

k=O

This leads to the desired approximation

X[t + at] _ X[t]e-(U'[t+Atl'xt-½U_[t+'xtlAt=) +

+ ,=o_ \(2_ll[TU2[t++At]At]2)'*_(2n-'_)'tn' Ux[tVl[t++At](At] 1 - e-v't'+A']'A' ,7,=oY_2"(Ul[t +m,__At].At)"'_] _

(2. + 1)! v2[t+ at] (v_[t + Atl.At)_' /
n! Ui[t +At]2 1- k=0E _ ) , (37)

which is a quadratic, implicit, recursive solution to the first order differential equation (2). This is an implicit

representation because the four parameters U1, U2, V1, and V2 are all evaluated at some future time, t + At,
and therefore the solution algorithm must be iterative, as their values are not known in advance.

6.2 Explicit Approximation

By truncating the Taylor series expansions used in the derivation of the linear explicit approximation after

their quadratic terms rather than the linear ones, (20) becomes

AI[At] z e-( v'lil'''i+ ½v=[`l'_l') ill, e(U'[d`+½U=l'l''_) (Vi [t] + Y2[t] .z)dz, (38)
Jz =0

12



whichisamoreaccurateapproximationto integral(17).
Introducingthechangeinvariable(33)into(38)gives

fv,lq.A, _yyAI[At] __ e-(tq[']'at+½ u2[t]'at2) ey e ½u2[t]''2 (V1 [t] + V2[t].z) dy,
Jy=O

which, upon expansion of the second exponential in the integrand into a power series, interchanging the
order of summation and integration, and differentiating the change in variable (33), enables integral (38) to
be written as

£, rAZ[Aq _ e-W,l,l.",+_u_H".e) _\_ x
n----O

:v,t,lf",,'-" v,E,l/",,-' )x \Ul[t] Jy=o ey y2, dy + UI[t]2 Jy=o eY y2n+l dy . (39)

Using the fact that [16]

(20)e-* =o e" yn dy = (-1)" n! (-1) m _¢'n _ e-¢ (40)

allows the two integrals in (39) to be evaluated, resulting in

oo ( _. (Ul[t].At)m )( U2[t] _" : (2_n)! V,[t] E( -1)'_ m[ e-V'[q'" -e-- _U2[t].A¢2AI[At]
\2u,[t]2] [ ,,! u,[t] .,=on----0

_ (2n + 1)! V2[t] _n+z ,,k (Ul[t]'At) k

This leads to the desired approximation

X[t + At] _ X[t]e -(U'lqA_+½v_[tlA_) +

°°(U2[t]'_":(2n),Vl[t](2" (Ui[t].At)" e_V, tq.zs ,)
e-_Ua[t].At2

_--_\2U,[t] 2j [ n! U,[t] _(-1)" m!
+

n=O rn=O

(2n-l'l)' V2[t] [2n+l )}n! U,[t] 2 [ _=o (-llk(U'[tl'At)'- k! e-U'[t] 'At , (41)

which is a quadratic, explicit, recursive solution to the first order differential equation (2). This is an explicit

representation because the four parameters Uz, U2, 171, and V2 are all evaluated at the current time, t, and
therefore their values are known.

6.3 Euler-Maclaurin Approximation

Let us express the nonhomogeneous integral (15) in terms of an asymptotic Euler-Maclaurin expansion [15]
in the form

k (_1) n Bn (f2n-,[t + At] - f2n_l[t]).At 2n + h.o.t.
1[At] = ½(Y[t+ At] + y[t]).At + _ (2n)!

= ½(f[t + At] + ]'[t])-At - _ (f_[t + At] -- fz[t]).At 2 + _ (f3[t + At] - f3[t]).At4 + h.o.t., (42)

in which subscripts on f, like U and V, denote the order of differentiation. The Bernoulli numbers, B,,, are
defined as

• _ _ ' B_= _ Bo= _ etc.,I]_ B1 : , B2 = , B3 -" , B4 = 3"-0' 6-6' 27'30'
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where these subscripts do not denote differentiation. The series is asymptotic, or semiconvergent, and must

be truncated at k terms before the series begins to diverge. The function fie) is the integrand of equation

(15), as defined by (23). The integral in the definition of fie) can also be represented as an asymptotic

Euler-Maclaurin expansion, and consequently the function fie) assumes the form

/[¢1 = v1[¢1exp[- (1 (U1[¢]+ V,[t+ All)(t+ At- ¢) +
k

(- 1)nB,_
(U2n[t + At] - V2n[_])(t + At -- ¢)2, + h.o.t. )]+ _ (2,)!

= V,[¢]exp[-(}(Vx[¢]+<[t+ ZXt])(t+ At-e) -

1_:(U2[t + At] - U2[¢])(t + At -- ¢)_ + _ (Gait + At] - U,[¢])(t + At -- ¢)4 + h.o.t. )]

By retaining just the first terms in these expansions, we approximate the integral with a trapezoidal formula

which involves the evaluation of the integrand fie) at times t and t + At. Because U_[t + At] is unknown,

the resulting formula for X[t + At] is implicit and must be resolved with Newton-Raphson iteration.

If we retain first order trapezoidal terms, the nonhomogeneous integral (15) is approximated by (24),
whilst the retention of quadratic terms yields the improved approximation,

Ai[At] = ½(vl[+],-_+t_'l+v,[, + At]).A++

+ _ (v.,[,]e-"+t"'l_ V'_,[,+ ,'-,1).+,"+

{Vl[t]e -Ai[Al] (21-(Ul[t]-_- Ul[t -_- At))- 1(2<[,]-_ U2[t "1- At]),A,- 1-_U3[t]*At 2) -8+

- U,[t + At] V_[t + ZX_]} .At', (43)

where the argument of the exponential is defined by

A_[At]= ½(Ul[t]+ Ux[t+ A_])At+ _ (U=[t]- U=[t+ zXt]).At=.

Substituting equation (43) into the recursive integral (14) gives the desired approximation

X[t + At] = X[t]e -a_ta'] + ½ (Vl[t]e-a'_[ at] + Vl[t + At]).At +

+ _ (v,I-,],_-""l"'l-v:,tt+ "1)"':' +

+ -''t'', +u,i,+ +u=t,+
- U,[t + At] V,[t + At]}.At _, (44)

which is the quadratic, Euler-Maclaurin, recursive solution to the first order differential equation (2). This
quadratic solution has an advantage over the implicit and explicit quadratic solutions, in that it does not

require the retention of an infinite series. In addition, it contains information about the parameters U1, U_,

1t"1, and V2 at both ends of the interval, t and t + At; whereas the implicit and explicit Taylor solutions

contain information at either one end or the other, but not both.

6.4 Discussion of Quadratic Solutions

For large time steps, At >> 1, with ½U2[t + All.At 2 < U_[t + At].At, the exponential term becomes small
compared with 1, and the asymptotic expansion

( +,'.,1y'(¢=o:,,,,t,+,'.,1 ,:,I,lim X[t + At] × __, 2Ul[t + At]2 ] n! Ul[tJi-At_]- 71! U--_7_]2/At--_large
rl----0

qw

14



ts,[t+ At] + u, [t¥ zxt]3

E(211 (2n- 2)! ( U2[l_ -t- At] _n-1x - 1) {--g- _ t.2Ul[t + zxtT)
l'i_l

(45)

is obtained for (37). As the solution goes to saturation--a property of first order differential equations with

exponential type solutions where U1 > 0--this asymptotic expansion reduces to that of the linear case, (26),

because the higher order derivatives U2 and 1/2 vanish there. Therefore, the added benefit of retaining the
higher order derivatives U2 and II2 manifests itself in improved accuracy, but only in transient domains; the

linear implicit solution is of equal accuracy in the neighborhood of saturation. Like the linear case, physically

meaningful asymptotic expansions for the quadratic explicit (41) and Euler-Maclaurin (44) solutions do not

exist when the arguments of the exponential functions are positive.

For small time steps, At << 1, the exponential term has a value of about unity, and (37) reduces to

v2[t+ At]lim X[t + At] = X[t] + Vl[t + At] Ul[t +-_]).At + h.o.t. (46)At ---+small

for the implicit case, whilst (41) reduces to

lira X[t + At] = X[t] + (VI[/] V2[t]_At--* small U1 [t] J" At "l- h.o.t. (4 7)

for the explicit case. These limits add the quantity -V2" At�U1 to the analogous limits given in (29) and
(30) for the linear approximation. In contrast, the limit in the small for the quadratic Euler-Madaurin case

is identical to the linear case given in equation (31).

7 Exact Solutions

Implicit and explicit, exact, recursive solutions for the first order ordinary differential equation (2) are derived
in this section. From these solutions, one can construct cubic and higher order, implicit and explicit, approxi-

mate solutions. A similar procedure for constructing cubic and higher order Euler-Madaurin approximations

follows along the path of development given earlier in the quadratic Euler-Maclaurin solution.

7.1 Implicit Solution

From an expansion of the integrand into an infinite Taylor series about the upper limit, the integral in (16)
may be written in the form

AS[At] = =:o exp - U, [t + At].z exp (- 1)n Un(n+2[t++2)[At] z n+2 x

)x _l)p Vp+l ze dz.

kp=0

(48)

For brevity we set

w,,+2[t + At]
b. = (-1)" (n + 2)!

and cv = (_1) p Vp+l[t 4" At]
p!

and expand the last exponential in (48) as a power series, so that

(49)

= ,'-i _ ht].z] o_ z2 mAI[At] [ exp [ U,[I + bnz n.,=o _ ')'-] _,>:. dz.
= " n=0 p=O

(50)
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Thefirst taskis to evaluatethecentralsumin (50).If weput
oo

g[z]=_ b,,zo,
n=O

then the Cauchy product g[z] g[z] is given by

oo

g[z]_= _ (b0b_+ bib12_1+-.. + b__,b_+ b_b0)_12,
12m0

which is obtained by collecting the coefficients of zv in the two product series.

call the coefficient of z _ in the preceding series b2,v, so that

oo

g[zl2= _ b_,.z",
V--0

where

Then, proceeding in sequence,

where

and in general,

b2,,, = bob12+ bib12-1 -4- ... + b12-1b1 + b12bo.

oo

g[z]3= _ b3,12__,
12=0

b3,u = bob2,v + bib2,,,-1 + ... + b12-1b2,1 + b,,b2,o,

Following KNOPP [17], we

oo

v=O

where the b,n,12 are obtained from Glaisher's relation [18],

bin,,, = bobm-l,12 + blbm-l,12-1 + "'" + b12-1bm-l,1 + bvbm-l,0
12

= _bkbm-_,.-k. (51)
k=0

Substituting into (51) from (49) we see that the b,n,12 are obtained recursively from the lower order b,,___.12

according to the relation
n

b,_,n = Z(-1) k Uk+2[t + At]
k=0 (k+2)! bm_l,.__. (52)

Because

and

we must require that

oo

g[z]°=__,_o,_z12:1
v=0

oo 12o

12=0 v=O

b0,0=l and b0,,,=0 (forn=l,2,...), (53)

and that

(54)U,,+2[t+At] (for n = 0,1, 2, ..).
bl,. = b. = (-1)- (. + 2)!

Tabulated values for the coefficients bm,n up to m = 5 and n = 5 can be found in Table 1.
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Theexpressionwithinthebracesin theintegrandof (50) may now be written as B[z], where

B[_] = _ b.z" c,:
rn=O \n=O / p=O )

rn=O v--O p=0 )

By using the same techniques we may write the Cauchy product

oo oo

 bm, Zv CpZ p
v-----O p--O

oo

= ___ (bm,oc. -4-b,_,lC,,-1 -4-"" "4-bm,.-lCz + b._,.co) z n
rt=O

OD

= E dm,nzn,
rt=O

which when combined with (49) results in

fl tl

dm,n = Ebm,kc,_-t = E(-1) n-k V.-_+l[t + At]
k=0 k=0 (n - 1¢)!

b._,_. (55)

The braces may now be written as

B[z] = _ z2,_ _ dm,. zn+2rn

m----0 n=0 rn----0 n=0

Introducing the change of variable (32) into (50), along with the expression for B[z], and interchanging

the order of summation and integration, allows the exact nonhomogeneous integral (15) to be written as

(dm,n y dy (56)
,y=0 .,=0.=0 --JT-.' Ul[t+,at] u_[t+,_t]

Recalling the integral solution (36), and substituting for dm,,_ from (55), enables this integral to be integrated

yielding

AI[At] = Eb._,k(-1)'_-k m!(nZ--_! x
rn=0 n=0 k=O

( n'4"2m (UI[_-4-z_t]'AI_)P)X 1 -- e -Ut[t+&tl&t E p! '

p=O

in which the coefficients b.,,k are obtained recursively from equations (52), (53), and (54).

An exact solution for the differential equation in (2), as given in (3), is therefore provided by the relation

X[t + At] = X[t]e -ao[at] -4-

c¢ ,. (n + 2m)! ( Vn-k+,[t + At]
+ A.._bm,k(-1)n-/c_.l_"_--_) ! _kU'_T_]]n_2--_l

×

/
m---9 n=O k=0

( n+2rn (Ul[t"_-mT_]'mt)P) (57)× 1 - e -U_[t+at]'at E p! '

p=O

which is an implicit recursive solution, in which the coefficients bo_,k in Table 1 depend on the derivatives

Up[t + At] through equations (52-54), and where

oo

AO[At] = _(-1) "+1 Un[t + At]At,
n!

n=l
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definestheargumentof theexponentialin thehomogeneouscontributionto thesolution.Thissolutionis
unconditionallystableprovidedthatU[t] is a monotonically increasing function, i.e. A0[At] > 0. If on the

other hand U[t] is a decreasing function of time, then the solution grows exponentially and the size of the
time step must be monitored. For this case, as stated in section 4.1, it is the explicit solution, developed in

the next subsection, which provides the asymptotically accurate expansion.

7.2 Explicit Solution

By expanding the integrand into an infinite Taylor series about the lower limit, the integral in (17) may be
written in the form

n=O p=O

(58)

where

ae[_t] = _ Ae. (59)
n----1

Proceeding as in the previous section, we put

and

for brevity, and by the change of variable given in (33), obtain

AI[At] = e -'_e[at] [ul[tl.,',t eY _ Z_ _dmn \_l[t]J(y ,_n+2m Ul[t]'dY
Jy=O rn=0 n=0

in which

with

k v.__+lEt]era,.= b.,k
k=O

b0,0=l and b0a,=0 (forn=l,2,...), (60)

and

bi,n = bn - Un+2[t] (for n = O, 1,2, . .), (61)
(,, + 2)!

_ Utc+2[t] bm-l,n-k.
bm,n = bkbm-l,n-k = (k + 2)!

k=0 k=0

Tabulated values for the coefficients bm,n up to m = 5 and n = 5 can be found in Table 1.

On effecting the integration via (40), we obtain

(62)

AI[ZXt]= oo oo n (n "[" 2m)! ( Wn_k+l[t ] ) Xe-(AetAt]-Vltt]tx') Z Z Z b,,_.k (-1) '*+2,n m! (n 7_-)! \ Ul[t],_+2,n+l
rn=0 n=0 k=0

( n+2m (Ul[t]'At)p )x Z (-1)_ p! e-Udtl'at '
p=0

where the coefficients b=.k are defined in equations (60), (61), and (62) in terms of the derivatives Up [t], and

where A0[At] is given by (59).
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Anexactexplicitsolutionto thedifferentialequation(2) is thereforegivenby

x[t + ±t] = x[t] _-a,ta,l +

m=0 n=0 k=0

[ n+_m )P! e -v'ttlat , (63)

where all the derivatives, Up[t] and Wit], are evaluated at the current time, t, and tabulated values of bm,k

are given in Table 1. Since A0[At] represents an exact infinite series, this solution is unconditionally stable

provided that U[t] is a monotonically increasing function of time, i.e. A0[At] > 0. When truncated to a

finite number of terms, the solution is conditionally stable and the size of the time step must be monitored

for accuracy and stability.

8 Solution Methods

The previous sections of this paper contain derivations for implicit, explicit, and Euler-Maclaurin solutions

with varying degrees of accuracy for the first order ordinary differential equation (2), as described in (3).

This section presents algorithms for solving a system of first order ordinary differential equations (1), and

we illustrate these procedures by using some of the integration methods derived above.

8.1 Implicit Algorithms

A technique like Newton-Raphson iteration must be used whenever a system of N, first order, ordinary

differential equations is to be solved simultaneously using an implicit integration algorithm. For illustrative

purposes, consider the following solutions for a system of N equations, i.e.

iVl[t + At I (1-e -'U'lt+'xt]'a') (64)Xi[t -4-At] __ Xi[t] e -'U'[t+atl'at 4_ iUl[t -4-All

and

1( + atl).At, (65)Xi[t 4- At] __ Xi[t] e -}('Ux[tl+_U_[t+Atl)at + _ iVl[/]

for i = 1, 2,..., N. These are the linear, asymptotic (19) and trapezoidal (25), implicit solutions for the

recursive integral equation (14) when written for a system of equations. A similar solution strategy to that

which follows can also be constructed for the higher order implicit solutions.

In many cases, not all of the functions iUl[t "4- At] are independent. For example, in the case of uni-

fied viscoplastic constitutive equations, which are usually comprised of thirteen equations, the number of

independent functions is usually two or three (see Example 4). Let M denote the number of independent

functions comprising the set _Ul[t + At] for i = 1 to N, with M E [1, N]. Also, let _ It + At], for a = 1 to M,
denote either the independent functions iUl[t +At] in (64) or the independent functions ½(iU1 It] +iU1 [t + At])

in (65). The solution vector X and the forcing function vector V1 can therefore be written in forms such as,

X {XI,X2,...,Xi,...,XN}T : {Xl,X2,...,Xvt,...,fM} T

{ X 1 X?, yNt y1 y2 ,xN_ Xel,Xa ,12 .,xc_N*', X_t,,l,X2M,. x1NI M }T' " " " _1 ' xx2' xx2' " " ' 1'*', ..... , ' *' '

associated associated associated associated
with _1 with L02 with _ with _M

where the vectors )_a and _71 comprise the set of all components Xi and iV1, respectively, over the range of

i = 1 to N, that are associated with the variable 0_. Each of the M component vectors, ._ and oV1, are
M

comprised of Na elements, where _a=l N_ = N.
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Wemaynowwrite(64)as

£a [e,] = )Ta[t]e-_o_' +

and (65) as

ae.[X.t,.]](1-c-'-_'t. (66)

 oE,I + +
where the dependence of )_a[t + At] on _,[t + At] is explicitly stated, and the dependence on t + At is

implicitly assumed. In general, the _a are functions of the 2_ [t + At] which are in turn, via (66) or (67),

functions of the #_[t + At], and therefore

or equivalently,

where

#a [)_'r [_-]] = Ca [_o_,] (for a, 7, v = 1 to M),

-,_a [.o,,] = 0, (68)

.rab,,] -- _;a[e,,]- ea.

If {_}x is the Ath guess for vector #a, then the true solut]0n satisfying (66) or (67) may be written as

_o = {_aL + _,

where the correction vector, ca, is the amount by which the true vector differs from the guessed value.

Inserting this definition into (68), and expanding the resultant by Taylor's theorem while retaining only the
first order terms leads to

7a [e,,] = 7a [{e,}_ + _]
M

-_ _=a[{0.}_1+ _ 0J=a[{0.L]
,s=, 0{0z}_

---- O.

cp

A solution to the resulting linear system of equations,

M

_-_Ja_c_ - -_[{#_}x] (for a = 1 to M), (69)
fl=l

for the unknown correction vector, cp, with Jacobian,

0{_}_ ' (70)

can be obtained by Cramer's rule (M _< 3) or Gaussian elimination (M _> 4). This leads to an improved

value for the solution vector, {#_),x+l, where

{ta}_+1 ----{_}_ + ca, (71)

which is iterated until the contribution from ca becomes negligible. In order to retain algorithmic stability,
it is useful to bound the size of the correction vector so that

(we typically set T - 0.25) where

II¢II_<T I1_11_

II_II= _/_+c_+...+_M _ and II_II_= ff{_,}?, + {e_}_,+ .-.+ {_'M}2•
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Thatis,if
T U01[_ Va E {1,U}

I]c[I > T ]IPII set c(, =:Vc,- i]c] [

in equation (71). This slows down the rate of convergence, but it keeps the procedure stable and therefore
free of oscillations.

If possible, the Jacobian should be determined analytically; if not, it can be acquired numerically, but

often at a greater numerical expense. Because Newton-Raphson iteration has quadratic convergence, the
number of iterations, A, required for convergence is usually few in number. One reasonable initial guess

to advance the iteration process to the next step is to use the values from the last time step, i.e. set

o.[t + = e.[q.
The advantage in using this integration approach over classical backward difference methods--like the

backward Euler method--when the system of equations happens to be a system of tensor valued equations

with M << N is evident, because the Jacobian is now of size M × M instead of N x N. Classical approaches,

on the other hand, iterate one scalar valued parameter for each spatial dimension, resulting in a much larger
Jacobian of size N x N. In the authors' native research field of viscoplasticity, there are usually three,

simultaneous, first order, ordinary differential equations to be solved for; two are symmetric, second rank,

tensor equations and the third is a scalar equation [7, 19]. This results in a spatial dimension of thirteen,

yet only three scalar valued parameters need to be determined by iteration in our approach, as opposed to

thirteen in the usual backward difference and other implicit approaches.

This method has been used by the authors [3, 5, 6] in the solution of several different inelastic material

models with great success. It has also been implemented into nonlinear finite element packages [6, 20] where

preliminary results from inelastic structural analyses show the method to be stable, equivalent or superior
in accuracy, and requiring about the same to 1/5 the cpu time when compared with the well known solution

techniques of: Euler forward difference method using a self-adaptive time step procedure [6]; second and

fourth order Runge-Kutta methods using self-adaptive time step procedures; and the trapezoidal backward

difference method using Newton-Raphson iteration [20]. Because these were feasibility studies, their primary

emphasis was not on writing efficient code, but rather to determine the feasibility of using the asymptotic

integration method in finite element applications. Further improvements in computation times are expected

as we become more knowledgeable about writing efficient code for the algorithms.

8.2 Explicit Algorithms

Different needs demand different solution techniques, and Newton-Raphson iteration will not always be the

technique of choice. This technique is ideally suited for large computer codes where large time steps are

needed to minimize the computation time. But it is not the best choice when small time steps are required

in order for one to gain a detailed picture of the response. For applications of this type, explicit solution

techniques work best.
The simplest integration algorithm considered in this paper is the linear explicit method given by

iVl[t]

(1-e -'vl[qA') (for i= 1 2, N). (72)x [t + At] = X [t] -'vltqA' + , ...,

In order for this approach to give accurate and stable results, it is necessary to keep the time step small.

A more accurate integration algorithm than (72) given above is the quadratic explicit method defined by

Xi[t + At] = Xi[t] e -('vltq'xt+½'U_t'l''t_) +

n--O _'2iUl[t]2] n! iUl[t] (-1)m(iUl[t]'At)mm! e- 'U_[d"at -

(2n+l)' 'V2[I] /2_+1 )}n! iU'[t]2 / _ (--1)k(iU'[t]'Atlkk! e-'U'(']at (73)

for i = 1, 2,..., N. The infinite sum on n found in (41) is truncated here to q terms, which must be set by

the user. The time step must also be kept small for this method, too.
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8.3 Predictor-Correctors

Predictor-corrector methods use an explicit algorithm to first look ahead and predict the value of the function

at a future point. Knowing something about the future response of this function, one then uses an implicit

algorithm to go back and make a second, more accurate, correction of what the future value of this function

is. These methods have the advantage of being able to use the difference between predicted, X_[t + At], and

corrected, Xi[t + At], values to establish an error, e.g.

¢= maxl ( Xi[t-4-_.i___ A'-t'] __-_'/_iAt]-X_[t +At] J'_ or s=max (]Xi[t+At]-X_[t+ All] ), x,[t-_ -_] '
which one can use to control the time step size. The first error listed is useful in transient domains where

Xi changes rapidly; it is the error accumulated over the time step, At. The second error listed, i.e. the

relative error, is the better choice when Xi changes slowly, because the first error term has a denominator

that becomes small under these conditions.

A linear predictor-corrector can be constructed by considering

iVl[t] (1-e -'tq[t]a') (for i= 1,2,...,N) (74)x'[t + At]= x,[t] e-'U'[']_' +

for the predictor, and
=% : =

,vii,+A,]( =X,[t + At] = X,[t] e-,u: t'+Atla' + W_[t + At] 1 (for i = 1,2,..., N) (75)

for the corrector, where

,U:[I + At] =,U, [X;[t + At],t + At] and ,V;[t + At] = ,VIIXS[t + At],t-I- At].

For this linear integration method both the predictor and corrector are unconditionally stable, but the time

step size must still be monitored for accuracy to avoid an oscillatory response.

A more accurate predictor-corrector than (74) and (75) given above is the quadratic predictor-corrector,
where

X[[t + At] = Xi[t]e -('u'tq'a'+½'v_l'l'at_) +

+ e__,_:l,r_,: (_,v_[_ ]" (2.)!,v,[t] _"
n=0 \2iVi[t]2) n! iVl[t] (_1) m (,U1

(2n+l)!W_[t]/2"+'('U'[t]'At)kn!iU,[t] _ _ k! )}- t k_==o(-1)k e-Jfi[tl'at (76)

is the predictor, and

x[t + At]

+

x[t] e-( 'vIt'+a'la'- _'v'['+atlat_) +

E\2iUI[ t+At] 2i t n! U;[t+At] \1- E rn_ ] -n=0 i m=0

(2n + 1)! _V_[t+ At] e_,v:[t+Atl.A, OU_[t + All-At) k
- n! "iU_[t + At] _ 1- E k! . , (77)

k=0

is the corrector, for i = 1,2 ..... N. Here

Ix;It-I- At],t-t- At] and W;[t-t- At] = ,V1 [X_[t-I- At],t-t- At],iU_[t + At] iU1

with

iU_[t +All=iV2[ [t+At],t+ and ,V;[t At]

The size of the time step for this quadratic predictor-corrector must be monitored for both stability and

accuracy so as to avoid an oscillatory response.
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9 Numerical Examples

In this section we consider four initial value problems to explore the capabilities and deficiencies of the various

algorithms derived in this paper for the integration of systems of nonhomogeneous, nonlinear, first order,

differential equations. The first example is simple enough to enable an exact solution to be derived, but yet

sufficiently difficult to tax the integration algorithms. This example is used to compare the accuracies and
rates of convergence of the various implicit integration algorithms developed herein. The classical method of

backward Euler integration is used as the meter stick for comparison. The second example is a population

model developed for predicting the growth of the AIDS virus in the human population. Like the first example,

this example possesses an asymptotic solution at large time; however, unlike the first example, its path to

the asymptotic solution is not monotonic. This makes the numerical integration much more difficult. The

third example is the classical Lotka-Volterra predator-prey model. This is also a population model, but with

an undamped oscillating solution. As a consequence, damping present in an integration algorithm--either

under- or overdamping--has the potential of adversely influencing the predicted result. The final example

is a viscoplastic model used to describe the deformation behavior of metals at elevated temperatures. This

model possesses asymptotic solutions; therefore, asymptotic integration algorithms work best. Unlike the
prior examples, its Jacobian cannot be reduced to a 1 x 1 matrix; although its dimension has been reduced

from the spatial dimension of 13 x 13 to a 2 x 2 for the Jacobian.

9.1 Example 1

The nonlinear differential equation

_)+ y3 = 1 with y(0) = 0 (78)

mentioned by Krieg [21] may be solved by the method of separation of variables, and the solution is

1 [l+2y] 7r
t= _tan-' L_J -½1n[1-yl+gln[l+y+Y2]--_" (79)

The variation of y with t is shown in Fig. 1.

The differential equation (78) may be written in the notation of this paper as

_) + U1. y = V1 where U1 = y2 and V1 = 1. (80)

IIigher order derivatives of U are easily calculated from (78) as

us = _)_= 2y_ = 2y(1 - y3),

U3 = U2 -- 2y(1 - 4y3) = 2(1 - y3)(1 - 4y3),

(81)

(82)

V2 = V3 .... = 0. (83)

The solution, according to either equation (37) or (57), up to terms including U_, is given by the quadratic,

implicit, recursive relation

V,[t + At] (1- e -U'i'+A'I'A')vii + At] = v[t]_-_t_'l + Ul[t + At] +

+ Vl[t +Ul[tAt]U2[t+All 3+ At] { 1 -- e -Ul[t+'atlat (1 + U,[t + At].At + ½(Ux[t + Atl. At) _) } +

+ 3Vl[t+At]U2[t+At]_Ul[l+ At] 5 {1- e-Ul[t+atla*(1 + Ul[t + At].At + ½(Ul[t + At].At)z +

+ (Ul[t+ At].At)3+ (rift+ },
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where

Let

sothat from(81)

Ae[At] = U,[t + At]-At - ½U2[t+ At]-m s.

el = Va[t + at] = y[t + At]2, (84)

_3/s'_u_[t + at] = (J_[t+ at] = 2v[t+ at] (1 - vet + At]3) = 2011;2 1 - _1 /.

The argument in the exponential of the homogeneous term can now be expressed in terms of _x,

A_[At] = Vl[t + At].At - ½Vs[t + At].At s

_1/9. ( _31s_= _l'Al--el 1-el )'At2,

and the quadratic, implicit, recursive solution is obtained in terms of _0a in the form

,/_ 3/2 _ 1
y[t+At] = y[t]e-( etat-e' (l-e,).At ) +__(l_e_e_.At)+

2_o]/s (1- _3/s_

+ _ ex ) {1-e -e'at(l+_ol-at+½(_l.at)s)} +

3 (2#]'2 (1 - -3's'_ } s

+ _ el } {l_e_e,.at(l+#x.At+l(#l.At)S +

+ A,) + }

Similarly, the quadratic, Euler-Maclaurin, recursive solution (44) takes on the form

y[t + At] = Y[tl e-a_led + ½ (e -A'He'] + 1).at +

+ _ {e -a*[e'] (½ (Ua[t] + Lol)- 1{2Us[t] +20] 's (1- e: Is)}.at-

112 At2) -- _O1 }'Ai_S, (86)U3[t]'

where

A_[L0t] ---- ½ (UI[t]--I- ,_Ol)-At + 1_ (Us[t] -- '_ 1/2 (1 ,3/2_ZL01 -- el // j

is the argument of the exponential.

Equations (85) or (86) may now be substituted into (84) to give

el = y[t+ At] s = Gbl],

and therefore we obtain the implicit relationship

_'[th] = 0 where -_'[_I] -- _[L01] - _1.

This equation is easily solved for _1 by the Newton-Raphson method and the solution, when inserted into

(85) or (86), yields y[t + At] in terms of y[t].

A comparison of the exact solution (79) with an Euler backward difference solution, and with the solutions

given by equations (85) and (86), with and without the quadratic terms, is given in Table 2. In this table, YEX

denotes the exact solution (79); YBE the backward Euler solution; YLI the linear implicit solution obtained

by keeping only the first two terms in (85), and setting Us = 0; yQ,rl the quadratic implicit solution obtained

by keeping one extra term in (85)--the first term in the infinite series--and retaining Us; YQt2 the quadratic
implicit solution obtained by keeping two extra terms in (85)--the first two terms in the infinite series; YLT

the linear trapezoidal (Euler-Maclaurin) solution obtained by keeping only the first two terms in (86), and
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Table2: AccuracyofSeveralIntegrationAlgorithms.

Valueofy at Point A
Number of

Integration YEX YBE YLI YQI1 YQI2 YLT YQEM

Steps to A
1 .8230 .6823 .7597 .8107 .8150 .8488 .8247

2 .8230 .7459 .7800 .8192 .8196 .8331 .8232

5 .8230 .7895 .8020 .8226 .8226 .8248 .8230

10 .8230 .8057 .8118 .8230 .8230 .8235 .8230

Value of y at Point B
Number of

Integration YEX YBE YL! YQI1 YQI2 YLT YQEM

Steps to B
1 .9895 .8351 .9393 .9677 .9689 1.2237 1.0053

2 .9895 .9154 .9579 .9803 .9808 1.0450 .9888

5 .9895 .9630 .9751 .9871 .9872 .9966 .9895

10 .9895 .9772 .9821 .9888 .9888 .9912 .9895

setting U2 = 0; and YQEM the quadratic Euler-Maclaurin solution given by (86). The values of y at points
A and B, where t = 1 and t = 2, were found from the various algorithms when the number of integration

steps to reach points A and B were taken to be 1, 2, 5, and 10. It may be seen from Table 2 that both the

linear implicit and trapezoidal approximations using only one step to reach point A, viz. yzx = .7597 and

YLT = .8488, are superior in accuracy to the backward Euler algorithm, YBE ---- .6823. Generally speaking,
the linear asymptotic solution is as accurate as the Euler backward difference solution with twice the number

of integration steps. When one extra term is retained in the asymptotic implicit algorithm, the solution using

one step to reach point A, YQI1 = .8107, differs from the exact solution, YEX = .8230, by about one percent,
whilst with one time step the Euler backward difference solution, YBE = .6823, is in error by about seventeen

percent. There is thus some incentive to retain the second order term in the algorithm, because the accuracy
achieved in one integration step, with this term included, exceeds that of the Euler backward difference

algorithm with more than ten times as many integration steps. In all cases, the quadratic Euler-Maclaurin
solution is the most accurate of the methods considered:

The results of Table 2 are given graphical interpretation in Fig. 2. Here we plot the relative error incurred

by the various integration methods versus the number of evenly spaced integration steps used to integrate

out to point A. The steeper the slope of the curve the greater the rate of convergence. The backward

Euler and linear implicit methods have slopes of about -1 with linear rates of convergence. The linear

trapezoidal and quadratic implicit methods have slopes of about -2 with quadratic rates of convergence.
And the quadratic Euler-Maclaurin method has a slope of about -4 with a quartic rate of convergence. This

illustrates, but does not provide theoretical proof of, the convergence properties of these methods. There

appears to be a power-law relationship between the number of integration steps and the error. To check

this, 1000 integration steps were used with the quadratic Euler-Maclaurin method resulting in an error on

the order of 10 -14, which corresponds to a linear extrapolation of the YQEM curve in Fig. 2. Of note is the
fact that the Euler-Maclaurin methods have rates of convergence that are twice their order, while the Taylor

methods have rates of convergence that equal their order.

Point B is in the asymptotic region where y approaches unity. Here the differences between the Euler

backward difference algorithm and the present formulations decrease. This is due to the fact that the higher

order derivatives of U vanish as y approaches its asymptotic value. However, it may be seen from Table 2
that even at the point B where t = 2, there is still a considerable error in the Euler backward difference

solution as compared to the present solutions. Qualitatively, the trends present in Fig. 2 for point A are the

same at point B. Quantitatively, there are differences in the errors for any given method between points A
and B, but these are slight.
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ThedifferencesbetweenthesolutionsYQI1 and YQt2 are not large, and greater accuracy can therefore
only be attained by the use of a cubic or higher order solution. Including the third term in the infinite series

will do little to enhance the accuracy of the quadratic solution.
When a system of N differential equations is solved, the Euler backward difference solution requires

the inversion of an N x N Jacobian; whereas, the present formulation generally requires the inversion of

an M x M Jacobian, where M << N is the number of independent scalars in the integral solution. This

is demonstrated in the remaining examples. The advantage of the present method thus manifests itself in

increased accuracy with a smaller Jacobian matrix.

9.2 Example 2

Examples 1 and 4 present differential equations that possess asymptotic limit states in which the second

and higher order derivatives of U and V vanish. There the derivative U1 increases to a limiting value and
remains constant until a change in the direction of the forcing function V1 is encountered. In such cases

the asymptotic approximations provide excellent accuracy. In the present example, which is concerned with

modelling the spread of the AIDS virus in a susceptible fraction of the population, the application of the

asymptotic Taylor algorithm results in solutions of the differential equations that are too heavily damped.

In this example, the function U1 increases at first, but then decays towards zero. Although it is always
positive, and U is therefore always an increasing function of time, the decay in U1 means that the exponential

in the integrand does not decay rapidly enough as we depart from the upper limit of the nonhomogeneous

integral for the asymptotic Taylor methods to provide an accurate representation of its value. Under these

circumstances, the trapezoidal approximation to the integral given in equation (25) is more appropriate,

because it weights the contribution to the integral from the upper and lower limits equally.

Hyman and Stanley [22] have presented a number of models for describing the spread of the AIDS virus
in a susceptible fraction of the population. In their simplest model, where

s(t)
I(0
A(t)

P

.y
i

e

r

So

the governing

where

is the

is the

is the

is the

is the
is the

is the

is the

Is the

is the

number of susceptible individuals,
number of infected individuals,

number of AIDS cases,

death rate of individuals without AIDS,

death rate of individuals with AIDS,

rate of developing AIDS of infected individuals,
probability of infection from an intimate contact with an infected individual,

average number of contacts between partners,

average number of new partners per year, and
susceptible population size before the introduction of the AIDS virus,

equations are defined to be

+ (, + _) s = ,SO, (87)

i + (7 + ,) I = As, (88)

A + 6A = 7I, (89)

I
A = i c r--. (90)

S+I

In the simulations that follow the constants have the assumed values: p = .02, i = .04, c = 1, r = 36, 3' = .1,
/_ = .5, and So = 10,000,000.

9.2.1 Implicit Asymptotic Approximation

For the implicit, linear, asymptotic approximation, the appropriate recursive relations are derived from (19)
in the form

7I[t + At] (1 - e -'a') (91)A[t + At] = A[t] e -tat + _
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and

s[t + at]

icrzt,+at]sit+at]I[t + at] = I[t] e-(_+")a' + (7 + #) (S[t + at] + I[t + At])

icrI[t + At] At]).At]+st,lexp[- (#+St'+a'l +It'+

.0 (1-exo[-(.+
ic_i[t + At] Ad )+ (# + sit + At] + I[t +

icrI[t + At] )-At]).Sit + At] + I[t + At]

On putting
i c rI[t+ At]

01 =#+
S[t + At] +I[t + At]'

the relations for Sit + At] and I[t + At] can be rewritten in terms of 01 as

Sit + At] = Sit] e -°''a' + #S_____o(1 - e -e''ts`) =. S[0t],
01

and

(92)

(93)

lit + At]= I[t]e-('r+")at+ ((01-_;#.#)S[01]'/.] (1- e-(_+,).ast)= 1101]. (94)

Substitution of (94) and (93) into (92) gives the required implicit equation for 0_,

icrI[ot]

J:[01] = # + 8101]+ &_] 01 = o,

which, after solution with the Newton-Raphson method, can be substituted into the recursive relations (91),

(93), and (94) to advance the solution from t to t + At.

9.2.2 Implicit Trapezoidal Approximation

More appropriate recursive relations can be obtained by employing the trapezoidal approximation in (25) to

evaluate the nonhomogeneous integral. In this case we write

- exp - -- (# + ,_[r]) dr #So d_s[t + at] : S[t]exp J=, O' + _[_])d,- +

,-, S[t]e-_(='+_'t'l+J't'+"'l) ''' + ½#& (1 + e-_X(="+_'H+'_tt+"'l)").At.

On setting

o, = # + ½(_[t]+ a[t + At]), (95)

the appropriate recursive relations have the form

S[t + At] = S[t] e -_''t" + ½#S0 (1 + e -°'zst) .At = S[01], (96)

= e--(q+p)'A' 1 e-(3,+#).gtt or {2(01 -- #) -- _[t]}S[_Ol] ) -At w I[01], (97)I[t + At] I[t] + _ ()t[t]S[t]

and

A[t + At] = A[t] e -6"At + -13, (I[t] e -6a' + 11011).At = A[01], (98)2

where ,_[t + At] has been replaced in terms of 0t through equation (95).

The required equation for 0_ is then obtained by substituting (96) and (97) into (90) and (95) in the
form

icr ( I[t] 11011
"Tr[0x] = -_ \ S[tiT I[t] + S[01] + I[011/ - 01 = O.
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Toestablishanaccuratebaselinesolution,equations(87-90)wereintegratedovera periodof 40years
with anexplicitEulerforwarddifferencemethodemploying8,000integrationsteps,andwereferto this
solutionasthe 'exact' solution for brevity.

A comparison of the 'exact' solution with an explicit Euler forward difference method and the linear

asymptotic implicit relations in (91-93) employing 400 integration steps each is shown in Fig. 3. We refer

the reader to the report [22] by Hyman and Stanley for a discussion of the solutions to the differential

equations. It is evident that the explicit forward difference method provides an underdamped response,
and that the linear implicit asymptotic solution provides an overdamped response. The implicit trapezoidal

algorithm given by relations (96-98) effectively averages the amount of under- and overdamping, and a

comparison of this solution employing 400 integration steps with the 'exact' solution is shown in Fig. 4. The

averaging expectation is borne out, and a very accurate solution is achieved.
When only 40 time steps are used to integrate the solution out to 40 years the effects are more dramatic.

As shown in Fig. 4, the trapezoidal solution shows some error. But as shown in Fig. 5, the asymptotic

solution is heavily overdamped and badly in error, while the explicit forward difference solution is heavily

underdamped and errs in the opposite direction.
It appears that the implicit asymptotic algorithm does a good job when Ux is a monotonically increasing

function. However, when U1 can increase and decrease over a given time increment, the implicit trapezoidal

(or a higher order Euler-Maclaurin) algorithm is the more accurate.

9.2.3 Improved Trapezoidal Approximation

In the preceding approximation, the forcing function on the right hand side of equation (88) is AS. On

examining equation (90) we find that the forcing function is a function of I, the variable in the differential

equation. The differential equation can therefore be brought to the homogeneous form,

0
and the appropriate trapezoidal recursion relations become

Sit + At] = Sit]e-½ (2"+x[d+_[t+_tl)At +

+ ½.So (1 + e-½('_'+n[t]+X[t+At])A').At, (99)

and

rt,+ =m exp[-½(2'7
On defining the variable Ox as

o,= (2'7+ 2.

we can immediately write

A[t]S[t] A[t + At]S[t + At]).At] .+ 2, I[t] I[t+ at]

 [ds[t] + At]s[t + At] 
z[t] z[t+ At] ] '

(100)

I[t + At] = I[t] e -es'at _ I[el]. (101)

We can use the definition of A in (90), viz.

icrI[t + At] _ icrI[ex] (102)
A[t + At] = S[t + At] + I[t + At] - S[t + At] +/[eli'

to eliminate the expression Air + At]Sit + At]/I[t + At] from equation (100), and we find that

air]sit]
A[t + At] - icr - 2"7 - 2. + I[t-----_+ 2el --= A[_I]. (103)

This expression may then be substituted into (99) to give

Sit + At] = S[tle -½<_"+x[d+x[ed)zx` + ½PSo (1 + e - ½<2u+_'[t]+x[_'l)a') .At = S[#11. (104)
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TherecursionrelationforA may then be written as

A[t + At] = A[t] e -6'a' + ½7I[t] (e -6a' + e -_''a') .At = A[_I]. (105)

The required equation for _1 can now be obtained by substituting the expressions for _[_1], I[_1], and S[_1]
into (100) to give

+ z-G],] ]-o,:o.

The solution obtained with the homogeneous version of the equation for I is shown in Fig. 6 using only
40 time steps out to 40 years. It is clear from this example that much more accurate solutions are achieved if

the differential equations can be arranged so that the forcing function on the right hand side of each equation

is independent of the variable being solved for. Thus, we should like the right hand side of the S equation to

be independent of S, that for I independent of I, and that for A independent of A. A zero (homogeneous),

constant, or slowly varying function of the other variables is the ideal forcing function. This is, perhaps, to
be expected because then the right hand side is known, and we therefore approximate the exact Bernoulli

conditions of constant U1 and 171more closely, with all of the nonlinearity then residing in the exponential.

9.3 Example 3

The predator-prey equations of Volterra and Lotka [23] form a simple nonlinear system of differential equa-

tions governing the population of two biological species comprised of predators and prey. These equations
are known to exhibit closed oscillations similar to the stable vibrations of an undamped pendulum.

If x denotes the prey population and y the predator population, we can write the coupled system of
differential equations--in which the constants are taken as unity--in the form

and

= z - xy, (106)

= =y- y. (lO7)

9.3.1 An Inappropriate Asymptotic Algorithm

When the preceding equations are rewritten as _ + (y - 1)x = 0 and y + (1 - x)y = 0 it is evident that
the solutions will contain growing and decaying exponential type solutions according as y is less than or

greater than one for x, and according as x is greater than or less than one for y. It is clear at the outset

that asymptotic methods are not appropriate here unless we distinguish the ranges of x and y and apply the

appropriate asymptotic expansion in each region for each equation. We have not done this, but we do show

that the linear, implicit, asymptotic algorithm--which works well for the first and fourth examples--predicts

enough damping that the solution (known to perform almost circular stable paths in the x-y plane) spirals
in towards the steady state solution, z = y -- 1, where the populations of predator and prey become fixed

in size. In their book [23], Thompson and Stewart remark that "One acknowledged deficiency of the Lotka-

Volterra equations is thus that they have the structural instability of the undamped conservative mechanical

system, the phase trajectories of which can be topologically changed by the introduction of infinitesimal

viscous damping." The implicit asymptotic method, which was shown to exhibit too much damping in
Example 2, precludes the formation of a stable closed loop in the x-y plane.

The linear asymptotic recursion relations obtained from the differential equations

dc+ y.x = z (108)

and

can be written as

il + 1.y = xy (109)

=It+ at] = e-°""' + --x[t+ at] (1- e-'''') (110)
L01
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and
y[t + At] = y[t]e -at + elx[t + At] (1 - e-at), (111)

where

01 = y[t + At]. (112)

Equation (110) can be rearranged to give an explicit dependence on 01 in the form

=[t+ At]= i - =[e_], (113)
1 - -- (1 - e-e,.at)

01

which may then be substituted into (111) to give

y[t + At] = y[t] e TM + #,x[t] e -el'at (1 - e -a') -- Y[0,]- (114)

1 - 1 (1 - e-e,'a')
01

The preceding equation can then be substituted into (112) to yield the required equation for 01, viz.

J'[01] : Y[01] -- 01 "-- 0.

On evaluating the solution by Newton-Raphson iteration, and substituting into (113) and (114), we advance
from time t to t + At.

The solution in the z-y plane for this system of equations is shown in Fig. 7 under the initial starting

conditions x[0] = 1.0 and y[0] = 0.2 using a time step of At = 0.1. It is evident that the solution is
spiralling in towards the steady state solution z = y = 1 due to the damping that is inherent in the linear

asymptotic expansion. This spiralling in towards the steady state solution still occurs when much smaller

time steps are used, but the rate is decreased. If an explicit, Euler, forward difference method or the linear,

explicit, recursion relation of equation (21) is used to integrate these differential equations with a time step of

At = 0.1, the solution is underdamped and spirals out to infinity. Figure 8 shows the behavior of the linear,
explicit, recursion algorithm. _ With this size time step, a simple Heun---or improved Euler--method [24]

provides a stable oscillatory response, whilst a fourth order Runge-Kutta method can tolerate even larger
time steps. In the next subsection we attempt to improve on the implicit asymptotic method, which we

know to be inappropriate for this problem, by using the implicit trapezoidal approximation which worked

well in Example 2.

9.3.2 An Appropriate Trapezoidal Algorithm

The implicit, trapezoidal, recursion relation in equation (25) can be used to generate the following reeursion

relations from the differential relations in (108) and (109):

x[t + At]= _[t]e-_,t,l+_t,+_,D_, + ½(4t] e-_,l'l+,C'+_'l)_' + _[t+ At]).At,

and

u[t+ At] = y[t]_TM + ½(_[t]_[t]_-_' + _[t+ a@[t + At]).At.

If we put

0_= ½(y[t]+ v[t+ At]),

the recursion relations can be rearranged and expressed in terms of 01 to yield

• [t] e -_''_' (1 + ½A 0 : _[01],
x[t + At] = 1 - ½At

and

y[t+ At] = y[t]e-_' (1+ ½_[tl.at)
1- ½z[ell.At = y[01].

(115)

(116)

(117)
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Thegoverningequationfor 81is thenfoundfrom(115)and(117)as

5181]= ½ + - 81 = 0

The variation of the solution in the x-y plane for a time step of At = 0.1 is shown in Fig. 9, where it may

be seen that the solution does spiral inwards, but at a much smaller rate than the asymptotic solution of Fig.
7. When smaller time steps are employed the spiralling inwards can be arrested, and a steady oscillatory

response is obtained.

The preceding trapezoidal solution was given in order to emphasize the importance of rearranging the

original differential equations. There is, in general, no unique way of arranging the equations for solution,

and the ingenuity of the analyst is usually required to obtain an optimum form of the equations for solution.

In the preceding solution the differential equations were arranged in such a form that 1U1 -- y and 2U1 = 1

with forcing functions 1Vl = x and _V1 = xy. As discussed in Example 2, they may also be rearranged into a

more appropriate homogeneous form with zero valued forcing functions. We obtain the implicit trapezoidal
solution for this case in the next subsection.

9.3.3 A Better Trapezoidal Approximation

It is possible to rearrange the differential equations (108) and (109) into the homogeneous form

+ (y- 1)x = 0,

and

If we now let

+ (1 - z)y = 0.

1
81 -- _ (y[t] + y[t + At] -- 2) and _02 - ½ (2 - xEt] - x[t + At]),

then the implicit, trapezoidal, recursion relations with no forcing terms are obtained in the form

x[t + at] = x[t]e- l

The relations for L01and 82 can then be written as

81 ---- ½ (y[t](1 "t-e -e_'A`) -- 2)

and y[t + At] = y[t] e-P+.a`.

and 82=½(2-x[t](l+e-_"a')),

which when combined gives the required equation for 8x, i.e.

.T'[81] = ½(Y[t] (1 +exp[-½ {2-x[t] (1 + e -_''A')}-At]) - 2} - _x = 0.

(118)

(119)

On solution, el may be substituted into (119) and thence into (118) to step from t to t + At.

Results from this solution procedure are shown in Fig. l0 for a time step size of At = 0.1, where the

improvement is at once apparent. This solution still gives a tolerable but ragged stable loop when the time

step is increased to At = 0.3, a size at which the fourth order Runge-Kutta solution tends to show an even
more ragged approximation to the stable solution. The improved accuracy achieved when the right hand side

of each equation can be made homogeneous, constant, or weakly dependent on the other solution variables

is once again apparent.

9.4 Example 4

In the previous examples the Jacobians are of dimension l, and therefore the implicit algorithms developed

for their solution are straightforward. In this example we present a viscoplastic model where the governing

system of differential equations is sufficiently complex to warrant a Jacobian of dimension greater than 1.

Our implicit integration algorithms have an important advantage over classical algorithms--like backward
Euler integration--in that they have the distinct possibility of a substantial reduction in the order of the

Jacobian. In the AIDS model of Example 2, there is a reduction in order from a 3 x 3 to a 1 x 1 for the

Jacobian matrix; for the predator-prey model of Example 3, there is a reduction in order from a 2 x 2 to
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a 1× 1for the Jacobian matrix; and for the viscoplastic model considered below, there is a reduction in
order from a 13 x 13 to a 2 x 2 for the Jacobian matrix. This reduction in order of the Jacobian matrix is

of significant importance from a computational viewpoint.

Viscoplastic constitutive models [7, 19] are currently finding application in describing the rate dependent

plastic response of metallic structures that undergo significant temperature change over their duty cycle. We

developed the viscoplastic model [25] presented below for metallic polycrystalline materials. It is presented

here in a simplified form that is valid for temperatures in excess of about one half the melting temperature.
In this model,

D is the drag strength,
T is the absolute temperature,

Y is the yield strength,

Bij is the (deviatoric) back stress tensor,
Eij= eij- ½ekkSii is the deviatoric strain tensor,

Sij =aii - ½_kktf0 is the deviatoric stress tensor,

e 0 is the infinitesimal strain tensor,

ei_ is the (deviatoric) plastic strain tensor, and

crij is the Cauchy stress tensor.

The isotropic, stress/strain, constitutive equations are given by Hooke's law,

(12o)

where

ak_ = 3_(ekk - aAT6kk), (121)

AT=T-To

O:

P

is the temperature change with respect to a reference, To,
is the coefficient of thermal expansion,

is the bulk modulus,

is the shear modulus, and

is the Kronecker delta; 1 if i = j, otherwise 0.

Here one sees that the plastic and thermal strains, _j and a AT6ij, are eigenstrains for the deviatoric and
hydrostatic responses, respectively.

The evolution of plastic strain is described by the viscoplastic flow law,

with a kinetic law,

and two evolutionary laws,

where

II,p,l = O[T]Z [(ll  I-ID-Y)],

( B,, )/}ij = 2H  iPj 2L[Y] II pll '

(h[YI II PII- r[T,Y]) ,

(122)

(123)

(124)

(125)

h

H

L

7-

Z

7?

is the nonlinear hardening parameter for yield strength,

is the hardening modulus for back stress,

is the limiting state for the dynamic recovery of back stress,

is the thermal recovery parameter for yield strength,
is the Zener parameter,

is the hardening modulus for yield strength,
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_"ij = Sij - Bij

II=

iir,II_-

is the thermal diffusivity,

is the effective stress,

is the magnitude of plastic strain rate,

is the magnitude of effective stress, and

is the Macauley bracket of x whose value is x whenever z > 0, otherwise it is 0.

Viscoplasticity is an internal state variable theory where the internal state variables, Bij and Y in this
case, are governed by separate evolution equations. The evolution of internal state follows a competitive

process between hardening and recovery (both thermal and dynamic) mechanisms. The back stress, BO, is a
phenomenological representation of an internal stress state; it reflects the stress fields set up by dislocations

in their heterogeneous substructures. The yield strength, Y, is a phenomenological representation of material

strength; it reflects the density of dislocations.

We will consider a viscoplastic model characterized by material functions that are power-laws:

where

C

n

Q
R

Y

fY °"

(y  3-o
h[Y] = ,

r[T,Y] : fl[T]

is the creep strength,

is the creep exponent,

is the activation energy for creep (or self diffusion),

is the universal gas constant, 8.314 J/mol-K, and
is the fraction of yield strength to applied stress at steady state.

Because of the chosen forms for the material functions L, h, and r, this viscoplastic model analytically

reduces to the classical theory of creep [26] at steady state, where there is no evolution of the internal state
variables, and where

IlSll

defines the creep rate, with I[SII = -SijSij characterizing the magnitude of deviatoric stress.

For illustrative purposes, we will consider the following set of elastic material constants:

a = 20 × 10-6 °C-1,

i¢ = 83,750 MPa,

/J = 30,000 MPa,

and viscoplastic material constants:

C = 0.8 MPa,

D = 0.016 MPa,

H = #/2 MPa,

12 _5}

Q = 200,000 J/mol.,

y = 0.1,

77 =/J MPa,
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whichcharacterizecopperin theneighborhoodof500"C.
If wedifferentiateequation(120),combineit with (122),andsubtract(124)frombothsides;andthen

rearrangeequations(124)and(125),thefollowingsetof differentialequations is obtained:

_-IlePlIB -- (126)0'+H)llePll_'/ill_ll= 2_E/_+ L[Y] u,_,_+

(r[T,Y]-h[Y] II_Pll) y = 0, (127)l_+r/ y

Bij + H II_P H IIgPIIL[Y]1-----JB_j: _ E°" (128)I1_11
This system of equations has the form

(for _ = 1, 2, 3),

where

and

,u, = 0' +II_IIH)Ile,II, _UI = 7/ (r[T, Y] -yh[Y] II_PII) ,

1V1 = 211kq + H II_Pll _9, 0, H I1_11
L[y----TB/j, = 317, = [[_-H[[- IEO'"

It is now apparent why the Jacob/an is at most a 3 x 3 matrix (one for each of the three differential equations)

whereas the Jacob/an for backward Euler integration is a 13 x 13 matrix (one for each of the thirteen spatial

dimensions: six for the effective stress, six for the back stress, and one for the yield strength). However,
the Jacob/an must be further reduced to a 2 × 2 matrix. This occurs because 1Uz and aU1 both become

asymptotically proportional to II_p ]l at steady state, and are therefore linearly dependent at steady state.

Hence, the evolution equation for back stress (128) must not contribute to the construction of the Jacob/an

in order to prevent the Jacob/an from becoming singular.

9.4.1 An Asymptotic Algorithm

For linear, implicit, asymptotic integration, one has

)?_[t+ at] = )?_,[t]e-_'_' +

for the integration algorithm, where

(# + H) II g_ It and
_'= IlSll

+"']] (1-e-0-
#a

r[T, Y] - h[Y] II eP II)e2=r/ "_ ,

which are both evaluated at time t + At. Thus, the set of iteration functions becomes

11_ [{e,b,] II

and

_q[{e_}_]= Y[{e_}d - {e_}x'

which issolved through Newton-Raphson iteration.The derivativesrequired to constructthe Jacobian in

equation (70), e.g. cO[[_P 1[IcOn,, etc., have been determined numerically, for in this case the determination

of numerical derivatives is computationally more efficient than determining them analytically.
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TheNewton-Raphsoniterationsareaccomplishedby thefollowingscheme.First,valuesof el and ez
areguessed.In addition,wealsoguessthevaluesof Eij, Bij, and Y. The forcing vectors, 1V1, _V1, and

3t31 are then computed and used with LOl and e2 in the recursion relationships to determine 3_1, )_2, and

)_3- Estimates of Eii, BO, and Y are now available to compute improved estimates of the forcing vectors,

x_, 217x, and 3_7_ for the next iteration. It is evident from the preceding that this approximate algorithm is

basically one iteration in arrears in estimating Eij, Bij, and Y.
The capability of this integration method is demonstrated in Fig. 11. The solid line was obtained using

250 integration steps, and may be considered to be the exact solution. In this example, a homogeneous block

of material is sheared in a specified direction at a constant rate of straining to a fixed value of engineering

strain, i.e. 3' -= 2912. This block of material is then sheared in the opposite direction to a self-similar value

of engineering strain. The direction of loading is changed one last time to complete the loading cycle. The

increase in the shear stress from the first to the third reversal is due to a gradual increase in the value of the

yield strength, Y, over the loading history, i.e. the material is gradnally getting stronger because of work

hardening. The smooth curvature observed in the stress-strain response of each of the three loading segments

is due to the rapid evolution of the back stress, Bij, over each segment. For a more detailed discussion of
the model, see Freed and Walker [25], and of viscoplasticity in general, see Lemaitre and Chaboche [7]. The

differences between the exact response and those predicted using 25 and 3 integration steps are very small;

however, there is a measurable error for the case of 10 integration steps at the knee of the curve. At first

glance, the fact that 3 integration steps does better than 10, seems contradictory. However, the contradiction

is apparent only, because the three integration points are close to their asymptotic solutions, where the

implicit, asymptotic, integration method is very accurate. The regions within which the ten integration

points are in greatest error are the transient domains where the back stress is rapidly evolving. The use of

a higher order, asymptotic, integration method would reduce this error. One important observation about

this integration method is that the error generated in the transient domains does not propagate with the

solution into the asymptotic domains. This is because the correct asymptotic solution of the differential

equation is contained within the linear, implicit, asymptotic, integration method.

9.4.2 .4, Trapezoidal Algorithm

For implicit, trapezoidal, Euler-Maclaurin integration, one has

for the integration algorithm, where

and

el - ;u+H {'ll p[t]ll IlgP[t+At]ll)+ II [t+zXt]ll '

= C'[t]-h[till "[t]lly[t] + ,-[t+a ]-h[t+at]ll P[t+at]ll)Yit+ at] "

The set of associated iteration functions is therefore given by

= + II P[{o,, I1) _2 \llS[t]ll IIs[{e } ]ll

and

!

r/ (r[t]- h[t] llg@]lt +.r2 [{e-r}),] = _ Y[t]
\

/

which is solved through Newton-Raphson iteration, as described in the previous subsection.
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The capability of this integration method is shown in Fig. 12 for the same loading history that was used in
Fig. 11. The solid line represents 250 integration points, and is the exact response. For all practical purposes,

it is identical to the solid line of the previous figure. Good predictions are made with 50 integration points.

When 25 integration points are used, there is an error of about six percent between the exact and predicted

values. As the time steps are increased in size this error increases. For 10 time steps the error approaches

fifty percent. Clearly one must monitor the size of the time step when using trapezoidal integration so as

to secure accurate answers. It is also apparent in Fig. 12 that the trapezoidal solution does not converge
toward the asymptotic solution, as is the case in the linear, asymptotic, integration method, for the reasons
stated below.

The inaccuracies attendant on the larger time steps are due to the representation in equation (126). The
right hand side of this equation contains the term 11_P 11which depends in a highly nonlinear manner on the

variable Eli on the left hand side of the equation. As previously demonstrated in Examples 2 and 3, better
accuracy can be achieved if this circumstance is avoided.

10 Concluding Remarks

Generally, the methods which employ asymptotic Taylor expansions to evaluate the nonh0mogeneous integral

are suitable for stiff and boundary layer problems, whilst the trapezoidal and asymptotic Euler-Maclaurin

expansions of the integral are more suited to general equations. The integration algorithms developed herein
offer marked improvements in accuracy and stability over existing integration algorithms for systems of

nonhomogeneous, nonlinear, first order, ordinary differential equations. These new algorithms are reviewed

in the Overview, section 3. Several of these algorithms are asymptotically correct, thereby enabling large

ilme steps to be used while retaining sta-bility and accuracy. In all-cases, accuracy is greatly enhanced if

the right hand side of the equations (the nonhomogeneous contributions) can be made to be zero valued
(homogeneous), constant valued, or slowly varying functions of the other variables in the system of equations

being integrated. Four examples are presented to demonstrate the viability of these new algorithms. Various

solution strategies are given for each example to demonstrate the advantage of proper construction of a
solution procedure.
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Figure 1: Exact solution and points of integration for Example 1.
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Figure 2: Relative error of integration compared with the number of steps used to integrate out to point A

in Example 1.
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Figure 10: Homogeneous, implicit, trapezoidal (Euler-Maclaurin) solution of the Lotka-Volterra equations.
At =0.1.
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Figure 11: Linear, implicit, asymptotic (Taylor) solution for the viscoplastic model of Example 4.
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